Output feedback control of nonlinear systems using RBF neural networks

نویسندگان

  • Sridhar Seshagiri
  • Hassan K. Khalil
چکیده

An adaptive output feedback control scheme for the output tracking of a class of continuous-time nonlinear plants is presented. An RBF neural network is used to adaptively compensate for the plant nonlinearities. The network weights are adapted using a Lyapunov-based design. The method uses parameter projection, control saturation, and a high-gain observer to achieve semi-global uniform ultimate boundedness. The effectiveness of the proposed method is demonstrated through simulations. The simulations also show that by using adaptive control in conjunction with robust control, it is possible to tolerate larger approximation errors resulting from the use of lower order networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Output Feedback Tracking Control for a Class of Mimo Nonlinear Minimum Phase Systems Based on Rbf Neural Networks

An adaptive neural feedback tracking control scheme is presented for a class of multi-input multi-output nonlinear minimum phase systems with uncertainties and external disturbances. Gaussian basis RBF neural networks are used to approximate the plant unknown nonlinearities, and a high-gain observer is used to estimate the states which can not be measured. The proposed controller can guarantee ...

متن کامل

Dynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks

Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...

متن کامل

Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)

This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2000